quantificador ilimitado - ορισμός. Τι είναι το quantificador ilimitado
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι quantificador ilimitado - ορισμός

Quantificador Limitado

Quantificador Delimitado         
No estudo de teorias formais em lógica matemática, os quantificadores delimitados são muitas vezes adicionados para uma linguagem em adição aos quantificadores padrão "∀" e "∃". Quantificadores delimitados diferem de "∀" e "∃" em que os quantificadores delimitados restringem a gama da variável quantificada.
Quantificação         
O termo Quantificação tem vários significados, gerais e específicos. Ele cobre, antes de mais nada, toda ação que quantifique observações e experiências, traduzindo-as para números através de contagem e mensuração.
quantificação         
sf (quantificar+ção)
1 Ação de quantificar.
2 Filos Conversão de qualidades em quantidades.

Βικιπαίδεια

Quantificador Delimitado

No estudo de teorias formais em lógica matemática, os quantificadores delimitados são muitas vezes adicionados para uma linguagem em adição aos quantificadores padrão "∀" e "∃". Quantificadores delimitados diferem de "∀" e "∃" em que os quantificadores delimitados restringem a gama da variável quantificada. O estudo de quantificadores delimitados é motivado pelo fato de determinar se uma sentença com apenas quantificadores delimitados é verdade, muitas vezes não é tão difícil quanto determinar se uma sentença arbitrária é verdade.

Exemplos de quantificadores delimitados no contexto da análise real incluem "∀x> 0", "∃y <0", e "∀x ε ℝ". Informalmente "∀x> 0" diz "para todos os x, onde x é maior do que 0", "∃y <0" diz que "existe um y, onde y é menor que 0" e "∀x ε ℝ" diz "para todo x em que x é um número real ". Por exemplo, "∀x> 0 ∃y <0 (x = y²)", diz "cada número positivo é o quadrado de um número negativo".